# Mass Spectrometry analysis of Small molecules

**Metabolomics**- A realm of small molecules (<1000 Da)



### **Application of metabolomics**

- Nutrition sciences- eg. oil seed analysis/polyphenols/food adulteration/quality control
- Herbal drug evaluation, drug discovery
- Biomarker identification- eg. Cancer
- Toxicology assessment/functional genomics

#### **Metabolomics**

- Targeted (quantitative)- measurement of defined groups of chemically characterized and biochemically annotated metabolites using optimized assay
- Untargeted- comprehensive analysis of all the measurable analytes in a sample, including chemical unknowns.

#### **Targeted/untargeted metabolomics**

- Targeted metabolomics- extraction procedures can be optimized for compounds of interest
- Optimized MRM or SRM can be used for quantitation when standards are available.
- Provide comprehensive understanding of a vast array of metabolic enzymes, their kinetics, and biochemical pathways.
- Untargeted metabolomics- single extraction method may not able to extract all compounds and important compounds may be missed during extraction. Data mining can be a problem and requires the use of metabolomic software for identification.
- Offers opportunities for discoveries of novel drug, and biomarkers.

# Platform to process untargeted metabolomic data

- XCMS (developed by the Siuzdak Lab at the Scripps Research Institute) Online, is a web-based version that allows users to easily upload and process LC-MS data. It is a bioinformatics platform to identify endogenous metabolites..
- METLIN (developed by the Siuzdak Lab.) is a metabolite database for metabolomics containing over 64,000 structures and it also has comprehensive tandem mass spectrometry data on over 10,000 molecules.



# Points to be considered in LC-MS analysis

- Choice of ionization mode- ESI Vs APCI +ve/-ve modes
- Choice of eluting solvent- methanol Vs acetonitrile
- Additives/pH in mobile phase
- Molecular ion recognition (adduct formation)
- Chromatographic separation- stationary phase C8, C18 ..
- Evaluation of spectral quality- what to look for in a good quality spectra

#### **Sample preparation**



Quenching by liquid Nitrogen or cold methanol (stops metabolism)

Prepare internal standard stock solution

Extraction of metabolites

(methanol, methanol-water for polar) (chloroform or hexane for less polar) (protein precipitation, supercritical fluid extraction)

Concentration
(evaporation under vacuum, lyophilization, SPE)

#### MS acquisition strategy

Full scan (Q1 scanning) for total profiling of metabolites (+ve and -ve ion mode) ESI/APCI

ESI- Effluent is charged and nebulized, for semi- polar or polar compounds e.g. Conjugated metabolites.

APCI- Effluent is heated but not charged- a corona discharge is needed. Good for neutral or less polar compound.

#### ESI is the most common ionization method

**Advantage:** non-selective and most ionizable ions are detected **Disadvantage:** low sensitivity and detection of minor metabolites is compromised.

#### **MS** analysis

- Direct MS analysis
- Without chromatographic separations- HTS possible.
- High resolution MS FTICR-MS high resolution
- >1,000,000 and mass accuracy (<1 ppm)
- Problems- difficult to interpret the data
- LC-MS and MS/MS
- GC-MS (volatile metabolites) and LC-MS- normal phase, reverse phase (C8/C18) and HILIC. UPLC-QTOF-MS for highly complex plant metabolomics.

#### Quantification

- Relative or absolute quantification.
- Relative- normalizes the metabolite signal that of an internal standard signal intensity in large scale untargated profiling (eg. Non-naturally occurring lipid standards- Cer 17, stable isotope labeling through metabolism- AA-d8.
- Absolute quantification- based on external standards or internal isotopically labeled standards- targeted metabolomics.
- Matrix effects- signal suppression or enhancement are major issues. Stable isotope labeled standards are needed.













### **Lipidomics**

Lipidomics- A comprehensive analysis of lipid molecules in response to cellular pathophysiology

### Why measure lipids?

Lipids are important- as a membrane bilayer

- provides hydrophobic environment for protein function
- reservoir of energy
- signaling molecules



Lipidomics can perhaps best be defined as a comprehensive analysis of lipids on the systems-level scale together with their interacting factors



## Tandem mass spectrometry has the ability to characterize the fatty acyl chain in -ve ion mode

Phospholipids may undergo demethylation and then the loss of the fatty acyl groups from glycerophosphocholine backbone.

### Shotgun lipidomics: intrasource separation of lipids for quantitative lipidomics

| Group                  | Electrical Propensity                            | Lipid Classes                                                                                                                        |
|------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Anionic lipids         | Carry net negative charge(s) at physiological pH | Cardiolipin, acylCoA,<br>sulfatide, PtdIns (PtdInsP,<br>PtdInsP <sub>2</sub> , PtdInsP <sub>3</sub> ), PtdGro,<br>PtdSer, PtdH, etc. |
| Weak anionic<br>lipids | Carry a net negative charge at alkaline pH       | PE, lysoPE, ceramide,<br>NEFA, eicosanoids, etc.                                                                                     |
| Neutral polar lipids   | Neutral at alkaline pH                           | PC, lysoPC, SM, glycolipid,<br>TAG, etc.                                                                                             |
| Special lipids         | Vary                                             | Acylcarnitine, sterols, etc.                                                                                                         |

The ionization efficiency of an analyte greatly depends on the electrical propensity of an individual analyte in its own microenvironment to lose or gain a charge

Source: Gross and Han, 2004

## How to extract lipids? Extraction of lipids by Bligh/Dyer method

- To a homogenized sample (1 ml containing internal standards) add methanol (2.5 ml) and chloroform (1.25 ml), sonicate by 4-5 bursts; extra 1.0 ml water and 1.25 ml chloroform added and vigorously shaken.
- Centrifuge (1,000 x g) for 2 min and separate the chloroform layer (bottom layer) and repeat the process twice.
- Combine the chloroform soluble phases and evaporate to dryness and store at -20°C until analysis.

















#### **Conclusions**

- LC-MS-based metabolomic approach is promising for the quality control of dietary supplements, and discovery of novel markers in biomedical research.
- Tandem mass spectrometry analysis of phospholipids in +ve ion mode characterizes phospholipid polar head groups, whereas –ve ion mode provide fatty acid chain structural information.
- Shotgun lipidomics can be used for rapid and reproducible global analysis of lipids in biological samples.
- Identification of metabolites (lipids or any other metabolites) at a molecular level present a great challenge due to their structural diversity (isobars and isomers) and dynamic metabolism.